1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
| #include <cstdio> #include <cstring> #include <vector> #include <cmath> #include <algorithm> using namespace std;
const double eps = 1e-8;
int dcmp(double x) { if (fabs(x) < eps) return 0; return x < 0 ? -1 : 1; }
double mySqrt(double x) { return sqrt(max((double)0, x)); }
struct Point { double x, y; Point() {} Point(double a, double b): x(a), y(b) {} Point& operator = (Point p) { x = p.x; y = p.y; return *this; } }; typedef Point Vector; Vector operator + (Vector a, Vector b) { return Vector(a.x + b.x, a.y + b.y); } Vector operator - (Point a, Point b) { return Vector(a.x - b.x, a.y - b.y); } Vector operator * (Vector a, double p) { return Vector(a.x * p, a.y * p); } Vector operator / (Vector a, double p) { return Vector(a.x / p, a.y / p); }
double dot(Vector a, Vector b) { return a.x*b.x + a.y*b.y; } double cross(Vector a, Vector b) { return a.x*b.y - a.y*b.x; }
struct Line { Point p; Vector v; Line(Point p, Vector v) : p(p), v(v) {} Point getPoint(double t) { return Point(p.x + t*v.x, p.y + t*v.y); } };
struct Circle { Point c; double r; Circle(Point c, double r) : c(c), r(r) {} };
double dists(Point p1, Point p2) { return sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y)); }
int getLineCircleIntersection(Line L, Circle C, Point& Q) { double a = L.v.x; double b = L.p.x - C.c.x; double c = L.v.y; double d = L.p.y - C.c.y;
double e = a*a + c*c; double t = (-1 * (a*b + c*d)) / e; Point p = L.getPoint(t);
double cp = dists(p, C.c); if (cp > C.r) return 0; double qp = sqrt(C.r*C.r - cp*cp);
double ap = dists(p, L.p);
double ratio = (ap - qp) / ap; Q = L.getPoint(t*ratio);
return true; }
bool onRay(Point A, Line L) { Vector LA = A - L.p; return dcmp(cross(LA, L.v)) == 0 && dcmp(dot(LA, L.v)) > 0;; }
bool onSegment(Point A, Point B, Point C) { return dcmp(cross(B - A, C - A)) == 0 && dcmp(dot(B - C, C - A)) < 0; }
Point mirrorVec(Point A, Line L) { double ratioOC2OD = dot(L.v, A - L.p)/dot(L.v, L.v); return L.p + L.v * ratioOC2OD; }
Point mirrorPoint(Point A, Line L) { Vector D = mirrorVec(A, L); return D + (D - A); }
Point O, A, B, Q; Vector V; double radius;
bool canTouch() { Circle C(O, radius); Line LA(A, V); if (getLineCircleIntersection(LA, C, Q)) { if (onSegment(B, A, Q)) return true;
Line CQ(O, Q - C.c); Point mA = mirrorPoint(A, CQ);
Line QB(Q, B - Q); if(onRay(mA, QB)) { return true; } } else { if (onRay(B, LA)) return true; } return false; }
int main() {
int T; scanf("%d", &T); for (int tcase = 1; tcase <= T; ++tcase) { scanf("%lf%lf%lf", &O.x, &O.y, &radius); scanf("%lf%lf%lf%lf", &A.x, &A.y, &V.x, &V.y); scanf("%lf%lf", &B.x, &B.y);
if (!canTouch()) { printf("Case #%d: No\n", tcase); } else { printf("Case #%d: Yes\n", tcase); } }
return 0; }
|